The turbines not only produce power, they produce wakes

CROATIAN CENTER of RENEWABLE ENERGY SOURCES

Wind Turbines: In the Wake of the Wind

ScienceDaily – On the Front Range within the Rocky Mountains, prevailing winds sweep eastward over the mountains smack into the National Wind Technology Center. Several wind turbines, some taller than a 40-story building, spin and hum at the site, just outside of Boulder, Colo., waiting for an experiment to start in the next month.

The turbines not only produce power, they produce wakes — similar to what forms in bodies of water — that are invisible ripples and waves and other disturbances in the atmosphere downstream that can damage turbines and decrease efficiency. Lawrence Livermore National Laboratory researchers and collaborators will launch a study of those wakes this month, with an eye toward improving the efficiency of wind farms.
The scientists also will collect valuable data that will help validate the wind flow models developed at Livermore and other laboratories and universities.
“This study is part of a larger suite of observational and model development efforts under way at LLNL to help attain aggressive state and national targets for renewable energy deployment,” said Jeff Mirocha of LLNL. “This field campaign dovetails with ongoing observational studies at our Site 300 that are focused on understanding the complex wind patterns occurring in hilly, coastally influenced locations, which is similar to much of California’s wind resource.”
Livermore is working with the University of Colorado, National Oceanic and Atmospheric Administration (NOAA) and the National Renewable Energy Laboratory (NREL).
The Laboratory also has been working on numerical weather prediction models to predict power generated by the wind, so that wind farms can operate more efficiently while providing more power to the nation’s hungry power grids. Predictive time frames range from an hour ahead to days ahead of time.
The new project entails experiments that will help make a detailed study of wakes created by wind turbines. Those profiles could help turbine and wind farm developers improve layout and design. “The wakes can damage turbines and affect turbine efficiency,” said Julie Lundquist, a University of Colorado assistant professor who helped develop the models while at LLNL.
The study is aimed at an improved understanding and characterization of inflow conditions on turbines in complex terrain that would help engineers better understand, model, and design for turbine loading, turbine performance and power plant performance. The goal is to integrate advanced observational capabilities with innovative approaches to atmospheric simulation.
Researchers will collect meteorological data for validation of turbine wake models in a range of atmospheric stability conditions, including wind speed, wind direction and streamwise variance profiles.
Bob Banta, atmospheric scientist with NOAA’s Earth System Research Laboratory, has spent the last several years using a sophisticated instrument — a high-resolution, scanning dopplar lidar — to make three-dimensional portraits of wind speeds and directions in the atmosphere. For the wind technology site project, the research team aims to capture turbulence and other wake effects in a broad wedge of air up to 7 km (4.3 miles) long and 1 km (3,280 feet) high.
The team will use the scanning lidar to make a detailed look at the atmosphere in front of and behind one of the large turbines on the NREL site: a 2.3-megawatt tower that stretches 100 m (328 ft) high to the central hub and 145 m (492 feet) to the top of a blade.
The researchers hope to capture the effects of ramp up and ramp down events, when winds suddenly gust high or die down, and they will gather data on what happens downstream when winds shift direction quickly.
“This generation of wind turbines is stretching up into a complicated part of the atmosphere,” Lundquist said. “If we can understand how gusts and rapid changes in wind direction affect turbine operations and how turbine wakes behave, we can improve design standards, increase efficiency, and reduce the cost of energy,”
According to the American Wind Energy Associations, wind energy made up 2.3 percent of U.S. electricity by the end of 2010, up from 1.8 percent a year ago. Researchers have argued that to attain the Department of Energy goal of “20 percent by 2030,” the turbulent lower atmosphere — and its effects on turbines and turbine arrays — must be better understood.
Members of the Turbine Wake and Inflow Case study include: Banta and Yelena Pichugina of NOAA; Lundquist of the University of Colorado at Boulder and NREL’s National Wind Technology Center; Jeff Mirocha of LLNL; Matthew Aitken, Michael Rhodes, Brian Vanderwende, Robert Marshall, University of Colorado at Boulder graduate students; and Neil Kelley and Andrew Clifton of NREL’s National Wind Technology Center.
More info at http://solarserdar.blogspot.com.
CROATIAN CENTER of RENEWABLE ENERGY SOURCES ( CCRES )

Advertisements

About CROATIAN CENTER of RENEWABLE ENERGY SOURCES

CROATIAN CENTER of RENEWABLE ENERGY SOURCES (CCRES)• was founded in 1988 as the non-profit European Association for Renewable Energy that conducts its work independently of political parties, institutions, commercial enterprises and interest groups, • is dedicated to the cause of completely substituting for nuclear and fossil energy through renewable energy, • regards solar energy supply as essential to preserve the natural resources and a prerequisite for a sustainable economy,• acts to change conventional political priorities and common infrastructures in favor of renewable energy, from the local to the international level, • brings together expertise from the fields of politics, economy, science, and culture to promote the entry of solar energy, • provides the opportunity to play a part in the sociocultural movement for renewable energy by joining the association for everyone, • considers full renewable energy supply a momentous and visionary goal - the challenge of the century to humanity. CCRES Željko Serdar Head of association solarserdar@gmail.com
This entry was posted in ALTERNATIVE, ALTERNATIVE ENERGY, CCRES, CROATIAN CENTER of RENEWABLE ENERGY SOURCES, GREEN ENERGY, HCOIE, HRVATSKI CENTAR OBNOVLJIVIH IZVORA ENERGIJE, PASSIVE ENERGY, RENEWABLE ENERGY, RENEWABLE ENERGY CENTER SOLAR SERDAR, RENEWABLES JAPAN STATUS REPORT, SOLAR SERDAR and tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s